Sunday, May 30, 2021

Trailing Zeroes in a Factorial!

 Hey, πŸ‘²

         you're probably here searching for the solution to an interestingly difficult task of counting the number of trailing 0's in the factorial of a number.

Straightaway, here's the solution:

                                                   f(n) = [n/5] + [n/52] + [n/53] + ... [<1]

where [ ] is the greatest integer function (also called box or floor function) that truncates the fractional part of a real number & returns an integer value. ] 


> Examples: 

i) for n = 23:

       f(n) = f(23) =  [23/5] + [23/52] = [4.6] + [0.92] = 4 + 0 = 4

       Hence, 23! has 4 trailing 0s.

πŸ‘‰ Reason:

      How many multiples of 5 are between 1 and 23? 

      We have: 5, 10, 15, and 20 - four multiples of 5 which paired with 2's from the even factors, makes for 4 factors of 10.

      Thus, 23! has four trailing zeroes.

ii) Find the number of trailing zeroes in the expansion of 1000!

    for n = 1000:

    f(n) = f(1000) =  [1000/5] + [1000/52] + [1000/53] + [1000/54] + [1000/55= [200] + [40]  + [8] + [1.6]  + [0.32] = 200 + 40 + 8 + 1 = 249 

    Hence, 1000! has 249 trailing 0s.

πŸ‘‰ Reason:

      There are 1000 ÷ 5 = 200 multiples of 5 between 1 and 1000. 

      The next power of 5 i.e. 25 has 1000 ÷ 25 = 40 multiples between 1 and 1000. 

      The next power of 5 i.e. 125 has 1000 ÷ 125 = 8 multiples between 1 and 1000. 

      The next power of 5 i.e. 625  fits in the expansion too, and has 1000 ÷ 625 = 1.6 multiples implying 1 complete multiple between 1 and 1000. (the remaining = 1000-625 accounts for that '0.6' excess which is hence truncated)

      Thus, in total, we have 200 + 40 + 8 + 1 = 249 occurrences of the factor 5 in the expansion of 1000!

Solution approach:

      a) Bruteforce: first calculate n!, then count trailing 0s in the result (by repeatedly dividing the factorial by 10 till the remainder is 0).

         Disadvantage: Inefficient - overflow issues for larger integers as the factorial of a number is a big number. (factorial grows like a monster!)

     b) Efficient way lies in the prime factors responsible for the trailing 0s : 2 and 5. 

         Counting frequencies of 5 is enough (since a 2 without a 5 can't make up a 10). Like there are two 5s and eight 2s in prime factors of 11! (2^8 * 3^4 * 5^2 * 7). So no. of trailing 0s = 2.

Program in C++:

     

/*
program in C++ to display
number of trailing zeroes in n!
*/
#include <iostream>
using namespace std;

// the required functionality:
int func(int n)
{
int ans = 0; // to store occurrences of 5

// dividing n by powers of 5:-
for (int i = 5; n/i >= 1; i *= 5)
ans += n/i; //update ans

return ans;
}

// driver Code:-
int main()
{
int n;
cout<<"Enter any number: ";
cin>>n;
printf("%d! has %d trailing zeroes!", n, func(n));

return 0;
}

      Output:


    > Time Complexity : log(n) (base = 5)


     > Related :  Try solving these: ⭐

                          https://leetcode.com/problems/factorial-trailing-zeroes/

                          https://www.codechef.com/LRNDSA01/problems/FCTRL     


   That's it! Explore, practice and move on...πŸ’—


2 comments:

  1. This comment has been removed by a blog administrator.

    ReplyDelete
  2. This comment has been removed by a blog administrator.

    ReplyDelete

You may like these:

HANDS ON JAVA(OOP - based uses) (Part-I)

     Practice JAVA like Never Before!                                                                                                     ...