Saturday, June 5, 2021

Finding the Unique Number in a List of Duplicates

 Hey,  πŸ’₯πŸ˜‹

          can you find the unique number in a list of duplicates? It's an interesting interview question which has many solutions.

Let's have a closer look:

Given: a list or an array having all elements twice except one element, like this:

A = [2, 8, 1, 8, 2]

Expected answer: 1 (i.e. figure out the unique element)

Problem Constraints: 

  •  1 <=  length of A <= 3 * 10^4
  • -3 * 10^4 <= A[i] <= 3 * 10^4
-----------------------------------------------------------------------------------------------------------------------------

Method 1: Brute force approach

n = length of A
    count = 0
    for i = 0 to n-1
    flag=0
    for j = 0 to n-1
            if i!=j and A[i] == A[j]
      then flag=1 and break
        //end inner loop
    if flag == 0  //no duplicates found
        ans = A[i]
            break
    print ans


  • For this approach:
            Time Complexity: O(n^2)  // two for loops (nested)
            Space Complexity: O(1)  // no extra space used 

-----------------------------------------------------------------------------------------------------------------------------

Method 2: Hashing (to avoid O(n) time for searching)

    create a map : m
    for i = 0 to n-1:
    if (m.find(m[A[i]]) == m.end() ) // if A[i] is not present in map
    m[A[i]] = 1
    else
      m[A[i]] ++  //count increment
    // now map has the frequency of all elements
    for i = 0 to n-1:
        if (m[A[i]] == 1) //occurred only once
        then ans = A[i] and break
    // end iteration
    print ans

  • For this approach:
            Time Complexity: O(n)  // for iteration through the list/array
            Space Complexity: O(n)  // extra linear space used 

-----------------------------------------------------------------------------------------------------------------------------

Method 3: Bit Manipulation 
    
    Hint: properties of XOR operation (⊕) : 
  • a ⊕ 0 = a
  • a ⊕ a = 0
  • a ⊕ b ⊕ a = (a ⊕ a) ⊕ b = 0 ⊕ b = b
        [a, b being Boolean variables or bits: 1 or 0]
  • Crux: XOR-ing a list of numbers removes duplicates since a ⊕ a = 0, leaving behind the unique number, because a ⊕ 0 = a.
 Hence, solution:
                

ans = 0
for i = 0 to n-1:
  ans ^= A[i]   // '^' = bitwise XOR operator
print ans


       Time Complexity: O(n)  // for iteration through the list/array
        Space Complexity: O(1)  // no extra space used 

-----------------------------------------------------------------------------------------------------------------------------
   That's it! Explore, practice and move on...πŸ’—

No comments:

Post a Comment

You may like these:

HANDS ON JAVA(OOP - based uses) (Part-I)

     Practice JAVA like Never Before!                                                                                                     ...